Осушитель холодильного типа.

DRY3-23

Руководство по использованию и техническому обслуживанию.

Рекомендуемые запчасти.

Воздушное охлаждение.

FIAK Акционерное общество с ограниченной ответственностью.

Улица Виццано,23 Понтеккио маркони (Болония)-Италия Тел.(051)946783 факс(051)84526

Модель	Год выхода продукции
Номер	Макс.внутрен.темп
Продавец	Макс.внеш.темп
Производі	ительность Макс.внут.давление
Л/мин	Бар
Вид хладагент	гаДата техосмотра
Мошность	Напряжение/Частота

Опознавательная табличка.

Опознавательная табличка-материал, который расположен на задней части осушителя, содержащей все данные. Составленная монтажная таблица приклепляется с боку, значения переписываются в опознавательную таблицу. Приведенные данные необходимо всегда передавать изготовителю или продавцу для подачи информации, запасных частей, а также периода гарантии. Удаление или повреждение опознавательной таблицы лишает права на гарантию.

1.Правила безопасности.

- 1.1 Описание используемых символов.
- 1.2 Предостережения.
- 1.3 Правило использования осущителя.

2.Установка

- 2.1 Транспортировка
- 2.2 Место установки
- 2.3 Схема установки.
- 2.4 Схема соединения сжатого воздуха
- 2.5 Схема электрооборудования
- 2.6 Слив конденсата

3.Включение

- 3.1 Предварительное включение
- 3.2 Первое включение
- 3.3 Работа и отключение

4. Технические характеристики

4.1 Технические характеристики осушителей серии DRY3-23

5. Техническое описание

- 5.1 Измерительная панель
- 5.2 Описание функционирования
- 5.3 Схема потока
- 5.4 Холодильный компрессор
- 5.5 Конденсор
- 5.6 Осушительный фильтр
- 5.7 Капиллярная трубка
- 5.8 Испаритель
- 5.9 Электроклапан by-pass горячего газа
- 5.10 Теплообменник воздух-воздух
- 5.11 Отделитель конденсата
- 5.12 Электронный термостат ATR11
- 5.13 Электронный таймер слива конденсата ТС
- 5.14 Термометр
- 5.15 Электрическая схема

6.Техническое обслуживание и запасные части

- 6.1 Проверки и техническое обслуживание
- 6.2 Рекомендуемые запчасти

7. Поиск неисправностей и демонтаж

- 7.1 Поиск неисправностей
- 7.2 Демонтаж осушителя

8. Сборные чертежи компонентов осушителя

- 8.1 Таблица компонентов Сборный чертёж ОсушительDRY3-5
- 8.3 Таблица компонентов Сборный чертёж Осушитель DRY8-23

1.1 Описание используемых символов

Внимательно обращаться к начальному руководству по использованию и техническому обслуживанию, прежде чем начать какие-либо работы с осущителем.

Предостережение основного характера, опасность или возможность повреждения машины, знак символизирующий внимание.

Опасность электрического характера, выявление условий, которые могут быть опасными для жизни.

Опасность: составная часть или установка под давлением.

Опасность: составная часть или установка, которая в течение работы может достичь высокой температуры.

Опасность: запрещено дышать воздухом в условиях работы оборудования.

Опасность: запрещено использовать воду для тушения пожаров вблизи или над осушителем.

Опасность: запрещено выполнять работу при открытой обшивке панели.

Операции технического обслуживания и/или контроль, который вы выполняете с особой осторожностью и работа квалифицированного персонала.

Точка соединения входа сжатого воздуха.

Точка соединения выхода сжатого воздуха.

Точка соединения слива конденсата.

Операции, которые может выполнять специалист, удовлетворяющий условия квалифицированной машины.

Примечание: Фразы, которые вы знаете, но не придаёте значения.

Наша задача изготавливать и проектировать осушитель в связи с окружающей средой:

- Хладагенты лишённые CFC.
- Изоляционная пена, вспучивающаяся без усилий СГС.
- Проницательность, приводящая к сокращению энергетического расхода.
- Содержание громкого испускания.
- Осушитель и упаковка выполняются из рекуперируемых материалов.

Чтобы наши разъяснения по использованию не были бесполезными, соблюдайте простые правила экологического порядка, обозначенные этим знаком.

1. Люди во владении опыта, подготовка техники, нормативное и законодательное познание, степени производства необходимой энергии и в состоянии познания избежание возможных опасностей в выполнении доставки, установки, использовании и техобслуживании машины.

1.2 Предостережения.

Сжатый воздух – источник энергии высокой степени опасности.

Не работайте над осушителем с частями под давлением. Не направляйте струю сжатого воздуха и слива конденсата в

Не направляйте струю сжатого воздуха и слива конденсата по направлению к людям.

Забота по использованию установки осущителя в подъёме воды согласно тому, что предусмотрено в главе «Установка». В противном случае лишения гарантии, вы можете приехать при порождающейся опасной ситуации и/или при нанесении ущерба машине за оператором.

Правило и тех.обслуживание оборудования электропитания выполняется только квалифицированным персоналом.

Перед началом выполнения операций по использованию необходимо соблюдать следующие указания:

Убедитесь, что машина не имеет части под напряжением и не может быть соединена с реле электропитания.

Убедитесь, что машина не имеет части под напряжением и не может быть соединена с оборудованием сжатого воздуха.

Различные дифформации машины или относительные параметры функционирования не предполагают уполномоченной проверки изготовителя, другие вырабатывают возможные источники риска не признанные гарантией.

Не использовать воду для тушения инцидентов вблизи и над осушителем.

1.3 Правильное использования осущителя.

Осушитель разработан, изготовлен и произведён для уникального отделения содержащейся влажности в воздухе компресса. Каждое другое использование считается не правильным.

Изготовитель не берет на себя никакой ответственности.

Кроме того, для правильного использования необходимо соблюдать условия монтажа и в деталях:

- 1) Напряжение и частота питающего тока.
- 2) Давление, температура и производительность воздуха на входе.
- 3) Температура окружающей среды.

Осушитель произведён, оборудован и полностью установлен. Потребитель должен выполнять только присоединения к оборудованию, как описано в следующей главе.

Единственная цель машины отделить воду от возможных частиц масла, находящихся в воздухе компресса. Сухой воздух не может быть полезен в целях респираторов или обработки, где он находит прямой контакт с питательными веществами.

Не пригодный осушитель принимает грязный воздух или присутствие твёрдой частицы.

2.1 Транспортировка.

Проверить целостность законченной упаковки, разместить блок по соседству с выбранной точкой установки и приступить к распаковке.

- Предпочтительней доставка по средствам каретки для лёгких транспортировок.
- Держать всегда осушитель в вертикальном положении. Возможны перевороты, приводящие к непоправимым повреждениям некоторых частей элемента.
- Содержать машину, даже если она упакована в безопасном месте.

Упаковка основана рекуперируемых материалом. Спустить каждый отдельный материал в режиме приведения и в соответствии с тем, что описано в используемом месте.

2.2 Место установки.

Просим уделить особое внимание выбору места установки, в связи с нанесением ущерба при нормальном функционировании осущителя.

Компонент не подходящий для работы в взрывоопасной атмосфере или приводящий к опасности, не участвует в распространении твёрдого и газообразного материала.

Не использовать воду для тушения инцидентов вблизи или над осушителем. Минимальные требования для установки:

- Выбрать пустое место, незапылённое и укрывающего от непогоды.
- Положить на ровную поверхность и поддерживать в зависимости от степени веса осущителя.
- Минимальная температура окружающей среды +1°Си максимальная как в таблице значений.
- Обеспечить не менее одного метра на каждую сторону осушителя для вентиляции и возможных работ по использованию.

Осушитель не имеет необходимости установки опоры на ровной поверхности. Возможны анкеровки, оказывающие необходимые детали установки (осушитель на скобах, неподключенный, др.).

2.3 Схема установки.

1. Воздушный компрессор.

6.Осушитель.

2. Конечный хладагент.

- 7. Баллон сжатого воздуха.
- 3. Конденсационный сепаратор.
- 8. Конечный фильтр.
- 4. Фильтр предварительной очистки.
- 9. Конденсационный горшок

5. Aгрегат by-pass.

Установка вида A используется при работе компрессора с сокращением прерывистости и суммой потребления равноценной грузоподъёмности компрессора.

Установка вида В используется при расходе неодинакового количества воздух, и при значимых мгновенных значимых грузоподъёмности компрессора.

2.4 Схема соединения с сетью сжатого воздуха.

Операции, которые производятся квалифицированным специалистом. Всегда делать с установкой лишённой давления.

Забота потребителя гарантирует, что осущитель не будет использовать давление в данной таблицы. Возможные избыточные давления могут стать причиной ряда повреждений у операторов и машины.

Температура и количество вступающего дутья в осушитель должны соответствовать указанным пределам в таблице данных. В случаи особо горячего воздуха необходимо провести установку конечного хладагента. Присоединение системы труб должно иметь равный боковой разрез пропускной способности и осушитель очищен от ржавчины, сырцовой нити и других загрязнений.

По окончанию оказания операций по использованию, советуем установить сходную группу by-pass, как изображено ниже.

Осушитель реализуется с предусмотренными деталями по окончанию сокращения колебаний, которые должны возникать во время функционирования. Поэтому рекомендуем использовать присоединение трубопровода, который изолирует осушитель от возможных колебаний, происходящих на линии (гибких трубах, антивибрационных соединениях и др.).

2.5 Электрическое соединение.

Соединение электропитательной сети и систем защиты должны иметь сходные действующие законы в местах использования и выполняться квалифицированным специалистом.

Перед началом использования внимательно проверить, чтобы неиспользованное напряжение и частота в установке электропитания соответствовали значениям приписанных в таблице осущителя. Признано допустимое отклонение $\pm\,5\%$ в таблице напряжения.

Осушитель уже подготовлен к снабжению для электроустановки соединения в среде окончания кабеля с контактом (VDE 16A-Shucko).

Подготовить элемент электрического соединения питания , снабжённый выключателем дифференциальной и термомагнитной цепи ($1\Delta n = 0.03A$) с градированием выравненном потреблением осущителя (сделать метку в таблице относящейся к осущителю).

Провода системы питания должны иметь равные сечения потребления осушителя, содержащий счёт температуры окружающей среды, в условиях установки их длины и согласно нормам указателя национального энергетического общества.

Необходимо обеспечивать установку соединения разброса материала. Не использовать адаптер для штыревого контакта системы питания. Возможность приготовления и замены ответвления производится квалифицированным специалистом.

2.6 Слив конденсата.

Конденсат спускается под давлением воздуха, входящего в осущитель. Не направлять струю слива конденсата напрямую к людям.

Осушитель снабжается уже подготовленный для соединения в оборудование сбора конденсата с помощью действия трубы из гибкого пластикого материала диаметром 6мм и длиной 1500мм.

Слив конденсата происходит с помощью электроклапана защищенного механическим фильтром; отобранный конденсат сепаратором в цикле сначала фильтруется, с целью предотвращения заклинивания электроклапана и выхода наружу. Катушка электроклапана управляет электронным регулируемым циклическим таймером.

Соединять слив конденсата с оборудованием или с емкостью сбора и укреплять её равнение.

Сливы не могут быть влиты в систему под давлением.

Не спускать конденсат в окружающую среду. Конденсат отделяет осушителем содержащиеся частицы масла, остающиеся в воздухе компрессора.

Спускать конденсат в соответствии с нормами, действующими в стране установки.

Установите сепаратор вода- масло, в котором экспортируют все сливы конденсата: компрессоров, осущителей, резервов и др.

3.1 Подготовка к включению.

Убедитесь, что параметры функционирования соответствуют указанному значению в таблице данных осушителя (напряжение, частота, давление воздуха, температура воздуха, температура окружающей среды и т.д.).

Каждый осушитель сначала транспортировки проходит тщательное тестирование и контроль, представляя действующие условия работы. Независимо от выполненной проверки частица могла также подвергнуться повреждениям, в течение транспортировки. Для этого случая рекомендуется проверить в каждой части осушитель, в его поступлении и в течение первых часов функционирования.

Включение должно быть произведено квалифицированным персоналом.

Необходимо, что поставленный техник использовал безопасные методы работы и в соответствии с нормами, действующими в случаи неисправности.

Техник отвечает за правильное и гарантированное функционирование осущителя.

Не производить функционирование осушителя с открытыми панелями.

3.2 Первое включение

Следовать начальным требованиям при первом включении и каждому запуску после длительного периода бездействия или обслуживания.

Включение должно быть выполнено квалифицированным персоналом. Прямая последовательность:

- Проверить, что есть все относящиеся пункты главы «Установка».
- Проверить, что соединения в оборудовании сжатого воздуха были затянуты и трубопровод закручен.
- Проверить, что слив конденсата был хорошо затянут и соединён с емкостью или оборудованием сборки.
- Проверить, что система by-pass (если она установлена) была закрыта.
- Проверить, что ручной клапан установлен на контуре слива конденсата было открыто.
- Снимать все материалы установки и в зоне осущителя.
- Включить общий выключатель питания.
- Включить общий выключатель-позиция 1 измерительной панели.
- Проверить, что поглощение электроэнергии соответствует тому значению в таблице данных.
- Проверить функционирование контура слива конденсата ждать первые участия.
- Подождать несколько минут, что осущитель достигнет температуры.
- Медленно открыть клапан входа воздуха.
- Медленно открыть клапан выхода воздуха
- Если установлена система by-pass, медленно закрыть центральный клапан.
- Проверить, что нет потери воздуха в трубопроводе.

3.3 Работа и остановка.

Работа:

- Проверить, что конденсор чист.
- Проверить наличие электропитания.
- Включить общий выключатель-позиция 1 измерительной панели.
- Проверить, что светится общий выключатель позиция 1 и зелёный указатель «PWR» на ATR 11-позиция4.

- Подождать несколько минут, проверить показания температуры и разрядку конденсата.
- Загружать воздушный компрессор.
- Противообледенительная функция гарантируется участием электроклапана bypass горячего газа, символизируется красным указателем «on» на термостате ATR 11-позиция 4.

Отключение:

- –Проверить, чтобы показания температуры термометра были нормальными позиция 2.
- Выключить воздушный компрессор.
- Через несколько минут выключить общий выключатель позиция 1 измерительной панели осущителя.

Примечание: Показание температуры компресса между 0^{0} С и $+10^{0}$ С считается нормальным в значении возможных условий работы (производительности, температуры воздуха на входе, температуры окружающей среды и др.). В течение функционирования холодильный компрессор и вентилятор конденсатора всегда в работе.

Осушитель должен оставаться включенным в течение всего периода использования сжатого воздуха, а так же если воздушный компрессор имеет не длительное функционирование.

4.1 Технические характеристики осушителей серии DRY 3-23

Модель		DRY3	DRY 5	DRY 8	DRY	DRY	DRY	
Производительность воздуха	[л/мин]	350	550	850	1100	1100 1800		
при 35 ⁰ C 7бар	[м ³ /ч]	21	33	51	66	108	138	
		12	19	30	39	64	81	
Точка росы*	[°C]	+3 пр	и давле	нии 0.73	г/нм ³ во	одного с	толба	
Номинальная т-ра окр. среды (max)	[°C]			+25	(+45)			
Минимальная т-ра окр. среды	[°C]			+	1			
Номинальная т-ра на входе (max)	[⁰ C]			+35	(+45)			
Ном. Давление воздуха на входе	[Бар]	7						
Макс. Давление	[Бар]	16						
Падение давление на входе АР	[Бар]			0	.2			
Место соединения - вход		1/2"E	SP-F	3	3/4"BSP-	F	1"BSP-F	
Тип охладителя				HFA	134.a			
Количество охладителя	[r]	120	200	250	2	50	430	
Ном. Электрическая мощность	[Вт]	170	210	250	330	450	470	
Мак. Электрическая мощность	[Вт]	220	260	330	430	600	620	
Электрическая мощность вентилятора [Вт]		35 40						
Уровень звукового давления на	[ДбА]			<	70			
Bec	[кг]	34	37	39	41	43	45	

	Поправочный коэффициент в зависимости от работы давления														
Бар	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Коэф.	0.54	0.67	0.77	0.85	0.93	1.00	1.06	1.11	1.15	1.18	1.21	1.23	1.25	1.27	1.28

Поправочный коэффициент в зависимости от температуры окружающей среды								
Температура окружающей среды ⁰ С	25	30	35	40	45			
Коэффициент	1.00	0.95	0.88	0.78	0,70			

Поправочный коэффициент в зависимости от температуры воздуха на входе								
Температура воздуха ⁰ С	30	135	40	45				
Коэффициент	1.20	1.00	0.82	0.67				

Поправочный коэффициент в зависимости отточки росы										
Точка росы ⁰С	3	4	5	6	7	8	9	10		
Коэффициент	1	1.02	1.05	1.07	1.1	1.12	1.15	1.18		

^{*} Точка росы относится к температуре окружающей среды +25°C и воздуху на входе 7Бар и +35°C.

5.1 Измерительная панель

Единственная контактная поверхность между осушителем и оператором – измерительная панель, показанная на изображении.

- 1.Общий светящийся выключатель.
- 2. Электронный термостат ATR 11
- 3. Зеленая контрольная лампочка (индикатор) питательный осушитель.
- 4. Красная контрольная лампочка (индикатор) приведение в действие by-pass горячего газа.
- 5. Термометр точки росы.

5.2 Описание функционирования.

Описанный осушитель в данном руководстве состоит, по сути, из двух контуров. Контур сжатого воздуха подразделяется на два тепловых обменника и охладительный контур.

Сжатый воздух на входе, горячий и влажный, проходит теплообменник воздух—воздух для входа в испаритель (воздух—фреон), где при взаимодействии с охлаждающим контуром остужается с образованием влажности и в ней удерживается до конденсирования. Влажность конденсата находится независимо в цикле сепаратора.

Холодный воздух проходит теплообменник воздух- воздух, где передаёт часть аккумулированного холода входящему горячему воздуху, осуществляя предварительное охлаждение.

Охладительный контур необходим в различных работах, является составляющей холодильному компрессору, конденсору и испарителю, названный также теплообменник воздух—фреон.

5.3 Схема работы.

- 1) Холодильный компрессор
- 2) Конденсатор
- 3) Осушительный фильтр
- 4) Капиллярная трубка
- 5) Испаритель
- 6) Электроклапан by-pass горячего газа
- 7) Агрегат by-pass (комплектующие)
- 8) Теплообменник воздух- воздух
- 9) Отделитель конденсата
- 10) Клапан работы слива конденсата
- 11) Механический фильтр конденсата
- 12) Электроклапан слива конденсата
- 13) Вентилятор конденсатора
- 14) Электронный термостат ATR 11
- 15) Электронный таймер слива конденсата ТС
- 16) Аналогичный термометр
- 17) Датчик термостата ATR 11
- 18) Датчик термометра ТА

Направление потока воздуха	Направление потока газа хладагента
----------------------------	------------------------------------

5.4 Холодильный компрессор.

Холодильный компрессор имеет насос оборудования, где газ проистекает в испаритель, (низкая сторона давления), сжимается мелочь под давлением конденсации (высокая сторона давления).

Используемые компрессоры, все главные способы изготовления, рассматриваются для применения, где сравниваются различные связи давления и значительные изменения температуры. Герметическая установка полностью обеспечивает непроницаемость газа, повышение энергетической эффективности и продолжительность.

Насосный агрегат, собирает соединение умеренной влажности, уменьшает в образе действия резкие явления звукового испускания и передачу колебаний. Электрический мотор

Термическая защита вида «Klixon» защищает компрессор от превышения температуры и тока. Установка на нуль защиты и автоматической техники вновь представляет номинальные значения температуры.

5.5 Конденсор.

Конденсор имеет элемент цепи, в которой газ проистекает в компрессор, охлаждается и конденсируется, образуя жидкость. Конструктивно представляется как система медных труб (внутри которой находится газ) погруженных в пластинчатую упаковку из алюминия. Охлаждение происходит с помощью осевого вентилятора с высокой эффективностью, которая прессует воздух, входящая в осушитель сила в пластинчатой упаковке.

Является необходимым, чтобы температура воздуха окружающей среды не превышала значений таблицы. Самое важное сохраняйте чистой батарею от пыльного покрытия и других загрязнений.

5.6 Осушительный фильтр

Возможны места сырости, шлаков, которые могут иметь присутствие в охладительной установке или отстой, которые могут порождаться после длительного использования осущителя, стремятся ограничивать смазывание компрессора и засорение клапана расширения и капиллярных труб. Осушительный фильтр, размещается сначала в капиллярной трубке, задерживает все технические загрязнения, которые продолжают циркулировать в оборудование.

5.7 Капиллярная трубка

Заготовка медных труб с определенным диаметром, которая расположена между конденсором и осушителем, создает сужение в переход жидкого хладагента. Такое сужение провоцирует падение давления, которое функционирует температуру, которая поступает в испаритель: меньше давление на выходе в капиллярной трубке - меньше температура испарения. Диаметр не только длина капиллярной трубы имеет точные измерения для производительности, которые достигаются осушителем; нет необходимости какого-либо вмешательства обслуживания/регуляции.

5.8 Испаритель

Также называется теплообменник воздух - фреон, для этой гаммы осушитель имеет вид трубка в трубке, укомплектованный в алюминий: в трубке циркулирует воздух до охлаждения и в другой хладоноситель. В этой части системы происходит испарение жидкости, которая формуется в конденсор. В фазе испарения хладоноситель испаряется, потребляя тепло воздушного компресса, находящегося в другой стороне теплообменника. Испаритель закручивается в спираль, вставляется в основание осушителя и изолируется вспученной изоляционной пеной без СГС. Установка комплектуется в медь, и поток противоположного хладагента этого воздуха способствуют ограничению спада давления и достижению увеличения пропускной способности в теплообмене.

5.9 Электроклапан by-pass горячего газа

Находится между главной стороной компрессора и частью зажима испарителя имеет цель избежания в условиях недостаточности термической нагрузки осушителя (ограниченный поток воздуха или воздух не достаточно горячий), в испаритель присоединяется с нижней температурой 0°С. Возможны отрицательные температуры, допускающие образование льда в испарителе, вызывающие закупоривание прохождения воздуха и в крайних случаях разрыв этого же испарителя. Катушка электроклапана управляется электронным термостатом ATR 11.

5.10 Теплообменник воздух-воздух.

Все осушители этой гаммы оборудованы с теплообменником воздух-воздух вида труба в трубе комплектующиеся в медь. Цель этого теплообменника — выпадение тепла сжатого воздуха на входе, холодного на выходе. Преимущества такого поворота имеют два основания: входной воздух уже частично охлаждается, для которого охладительное оборудование может иметь измерения для гарантирующие более удерживаемый термический перепад, поддаётся энергетической экономии до 40-50%, во втором месте вливается холодный воздух, в линии сжатого воздуха предотвращает все другие формирования конденсата на наружной поверхности линии труб.

5.11 Отделитель конденсата

Холодный воздух на выходе испарителя направляется внутрь отделителя конденсата центробежного вида.

В воздух на входе, для соединения ребристой диафрагмы, запечатлевается вращательное движение с высокой скоростью частиц конденсата, для КПД мощности центрифуги.

Воздух после нахождения в конденсате направляется на выход для поступления в теплообменник воздух-воздух.

Отделитель центрифужного вида предоставляет преимущество высокой пропускной способности, также в изменении производительности, не требует техобслуживания, закупоривания и необходимости отделения твёрдых частиц.

5.12 Электронный термостат ATR 11

Гарантирует правильную точку росы также в изменении нагрузки, имеет характеристику более важную осущителю для сжатого воздуха. Электронный термостат ATR 11 выполняет лучшим образом задачу, имеющую измерительный прибор с установленной температурой, гистерезис переключения ограниченной Д1. постоянные свойства во времени, точность и быстроту.

Измерительный прибор выделяет точку росы для соединения датчика установленного в выводной части испарителя в узком контакте с системой воздуха и охлаждённым газом. В изменение температуры выход термостата регулирует электроклапан by-pass горячего газа выполняющий установленные параметры.

PWR: Светящаяся зелёная лампочка – Термостат загружен

ON: Светящаяся красная лампочка – Электроклапан by-pass горячего газа – в действии.

При включении осушителя зелёная лампочка «PWR» — освещена, термостат — включен. Если температура поднялась, датчиком опускается до установленного значения, включается красная лампочка «ON» и регулируется электроклапан by-pass горячего газа. Когда температура поднимается до степени Δt (гистерезис переключения) прерывается связь в электроклапане и красная лампочка «ON» выключается.

В течение техосмотра измерительный прибор регулируется в set-point приблизительного значения 2^{0} C с постоянной Δt 2^{0} K.

В таком случаи электроклапан by-pass горячего газа активируется, когда температура опускается вниз до 2 °C и дезактивируется когда температура вновь поднимается свыше 4 °C.

Установка:

Необходимо преобразовать set-point (температура участия), вставляя с маленькой отвёрткой в установленный полупеременный конденсатор, на заднем измерительном приборе, сбоку от датчика, в соответствии с надписью «set» под номером 9.

Вращение полупеременного конденсатора по направлению против часовой стрелки увеличивается, set-point до приблизительного максимального значения $+9^{0}$ С; вращение полупеременного конденсатора по часовой стрелки уменьшается set-point до приблизительного минимального значения $+2^{0}$ С. Значение Δt не регулируется и имеет равное приближение 2^{0} К.

Примечание: Каждое неправильное использование, если оно неоправданно, приведёт к лишению гарантии.

Повреждения:

В случаи поломки датчика или относительных поломок или неправильных контактов в конце соединения измерительный прибор входит в защиту, удерживая питание электроклапана by-pass горячего газа. Светящаяся красная лампочка «ON» всегда показывает вход оператора в места неправильного функционирования.

В случаи поломки в электронной системе включается красная лампочка «PWR».

5.13 Электронный таймер слива конденсата.

Осушитель снабжён электронным таймером для передачи электроклапана слива конденсата. Наличие автоматической системы не требует присутствия оператора.

PWR: Включение OUT: Выключение

DIPS: Установка времени микроинтерферометра **LED:** Светящаяся лампочка- Таймер загружен

Электронная система таймера слива конденсата ТС укомплектована внутрь изолирующей смолы с целью незаметной её комплектации в случаи опасности появления конденсированной влажности. Из смолы состоят лишь вводы, выводы, установки времени микроинтерферометров и с противоположной стороны светящаяся лампочка включения таймера.

При включении осушителя зелёная лампочка «LED» освещена, таймер включен. В правильном промежутке в конечный выход «OUT» будет подано напряжение, использованное в конце загрузки «PWR».

Время паузы ТО длится 1 минуту и время слива Т1 2 секунды. Возможно, что для требуемых деталей или на заявку тех. условий клиента ваш осушитель был подготовлен в разное время.

Установка:

Погружения	Т1: Слив	Т2: Пауза
1 0	DIP1: 1сек.	DIP4: 0.5 мин.
	DIP2: 2 сек.	DIP5: 1 мин.
	DIP3: 4 сек.	DIP6: 2 мин.

Для преобразования двух тактов достаточно переместить «Погружения» или принять в расчёт микровыключатели для подготовки тактов.

При желании достичь время слива T1=5сек. и паузы T0=3мин. необходимо опустить все микровыключатели и поднять на «ON» только отмеченные номера 1,3,5 и 6.

Повреждения:

В случаи повреждения таймера ТС, проверьте электропроводки, если необходимо замените его. Деталь может иметь поломку, когда включается лампочка.

5.14 Термометр

Термометр расположен на панели управления высвечивания, температура передается в части зажима испарителя, рядом с датчиком электронного термостата. Эта температура может быть сопоставлена с точкой росы. Оператор показания термометра имеет степень заключения, если осущитель правильно работает или были заменены неисправности. Показания температуры компресса между 0^{0} С и $+10^{0}$ С имеют нормальное удерживание различных значений слива, используемые машиной не только температуры окружающей среды и воздуха на входе.

5.15 Электрическая схема

Перечень:

IG: Общий выключатель **К:** Холодильный компрессор

KR: Начало движения реле компрессора **КМ:** Электрический мотор конденсатора **КТ:** Термическое устройство компрессора

VC: Вентилятор конденсатора

ATR: Электронный термостат ATR 11

PR: Датчик электронного термостата ATR 11

ТС: Таймер слива конденсата ТС

EVB: Электроклапан by-pass горячего газа **EVD:** Электроклапан слива конденсата

6.2 Рекомендуемые запчасти

В случаи неисправности деталей, следует выполнить их замену. Для замены других деталей, которые могли испортиться, например, в охлаждающем контуре, необходимо вмешательство холодильного техника или заводской ремонт.

		DRY					
Описание запасных частей	Код	3	5	8	1	1	23
Аналоговый термометр ROF 88	5610000001	1	1	1	1	1	1
Фильтр Y слива конденсата PN20 3/8"	64355FF010	1	1	1	1	1	1
Мотор вентилятора	5210110005	1	1				
Мотор вентилятора	5210110010			1	1	1	1
Щит мотора вентилятора	5215000010	1	1				
Щит мотора вентилятора	5215000020			1	1	1	1
Решетка вентилятора	5225000010			1	1	1	1
Электронный термостат ATR11 220-240B NTC	5616110001	1*	1*	1*	1*	1*	1*
Датчик электронного термостата NTC	5625NNN020	1*	1*	1*	1*	1*	1*
Электронный генератор синхронизации ТС 220-240В	5650110001	1*	1*	1*	1*	1*	1*
Электроклапан слива конденсата	64320FF005	1*	1*	1*	1*	1*	1*
Катушка электроклапана слива конденсата 230/50-60**	64N22MM005	1*	1*	1*	1*	1*	1*
Катушка электроклапана слива конденсата 240/50-60**	64N22MM010	1*	1*	1*	1*	1*	1*
Электроклапан by-pass	64120SS005	1	1	1			
Электроклапан by-pass	64120SS010				1	1	1
Катушка электроклапана by-pass 230/50-60**	64N22MM060	1*	1*	1*	1*	1*	1*
Катушка электроклапана by-pass 240/50-60**	64N22MM065	1*	1*	1*	1*	1*	1*
Светящийся выключатель 2Р 0/1	5450SZN005	1	1	1	1	1	1

Охладительный компрессор	5015110001	1					
Охладительный компрессор	5015110004		1				
Охладительный компрессор	5015110007			1			
Охладительный компрессор	5015110010				1		
Охладительный компрессор	5015110013					1	
Охладительный компрессор	5015110016						1

^{**} Заказать катушку в работе напряжения таблицы осушителя.

Примечание: Для заказа рекомендуемых частей или каких-либо других деталей следует сообщить текущие данные на идентификационной таблицы.

7.1 Поиск неисправностей и разборка.

Поиски неисправностей и возможные проверки должны быть выполнены квалифицированным персоналом.

Соблюдать особую осторожность, если надо принимать участие в охладительной системе. Хладагент под давлением расширяется в течение входа в систему, что может привести к обморожению и ряду повреждений при контакте с глазами.

- ♦Машина не включается?
- → Проверить, что присутствует электропитание
- → Проверить электропроводку
- ◆ Компрессор не функционирует
- → Присутствует защита «klixon» внутри компрессора подождать 30 минут и переправерить
- → Проверить электропроводку
- → Заменить защиту «Klixon»
- → Заменить, если монтировать, пусковое реле
- → Заменить, если монтировать, запуск конденсора
- → Заменить, если монтировать, ход конденсора
- ◆ Вентилятор не функционирует
- → Проверить электропроводку
- → Если присутствует неисправность заменить вентилятор

^{*}Рекомендуемые запчасти.

- ◆ Осушитель конденсата не сливает
- → Проверить электропроводку
- → Механический фильтр слива конденсата засорён спустить и почистить его
- \rightarrow Электроклапан слива конденсата заклинило спустить и почистить его
- → Катушка электроклапана слива конденсата сгорела- заменить её
- → Таймер ТС не исправлен заменить его
- → Точка росы очень низкая конденсат блокирован - см. спец.главу
- \rightarrow Электроклапан слива конденсата заклинило спустить и почистить его
- → Таймер TC не исправлен -заменить его
- → Осушитель погас включить его
- \rightarrow Группа by-pass (если монтировать) пропускает не обработанный воздух закрыть его
- ightarrow Осушитель конденсата не сливает см. спец. главу
- → Точка росы очень высокая см. спец. главу
- → Осушитель погас включить его
- \to Холодильный компрессор не функционирует см. спец. главу
- → Вентилятор не функционирует см. спец. главу
- → Воздух на входе очень горячий восстановить условия таблицы установить конечный холодильник перед осушителем
- → Частота воздуха на входе превышает значения таблицы – уменьшить значение – восстановить условия таблицы
- →Температура окружающей среды очень высокая и не имеет достаточного обмена воздуха в месте снабдить соответствующей аэрацией
- → Конденсат грязный почистить его
- ightarrow Осушитель конденсата не сливает см. спец. главу
- → Красная индикаторная лампочка «ON» на термостате ATR 11 всегда включена см. спец. главу
- \rightarrow Термостат ATR поступает в очень высокий Set-point -см. спец. главу
- ightarrow Утечка газа хладагента обратитесь к холодильному технику
- ◆ Очень высокое падение давления осущителя
- \rightarrow Точка росы очень низкая конденсатор блокируется и воздух не может проходить см. спец. главу
- \rightarrow Гибкий трубопровод соединения сдавлен проверить

- ◆ Длительность слива конденсата
- ◆ Присутствие воды в конвейере
- ◆ Точка росы очень высокая

- ♦ Точка росы очень низкая
- → Проверить электропроводку электронного термостата ATR 11
- → Проверить электропроводку электроклапана Ву-раѕѕ горячего газа
- ightarrow Катушка электроклапана by-pass горячего газа сгорела заменить её
- → Датчик термостата ATR 11 не получает правильной температуры в испаритель- довести датчик до достижения дна границы колодца
- → Термостат ATR поступает в очень высокий Set-point -см. спец. главу
- → Электронный термостат не исправлен
- \rightarrow Электроклапан by-pass горячего газа заклинило обратиться к холодильному технику
- ightarrow Проверить электропроводку датчика термостата
- → Датчик ATR 11 не исправлен заменить его
- → Электронный термостат не исправлен заменить его
- ◆ Индикаторная крас ная лампочка «ON» термостата ATR всегда включена

7.2 Разборка осушителя.

Если осушитель сломался необходимо заменить его главным образом подобным оборудованием.

Рекомендуется следовать правилам безопасности, действующие для переработки каждого отдельного материала.

В хладагенте присутствуют частички масла смазывания холодильного компрессора.

Не рассеивать хладагент в окружающую среду.

Извлечь его из осушителя с неподходящими деталями и сдать его в центр уполномоченного сбора, в котором займутся его снабжением для повторной работы.

8.1-8.2 Таблица компонентов осущителя

- 1. Аналогичный термометр ROF 88
- 2. Электронный термостат ATR 11
- 3. Светящийся выключатель 2Р 0/1

- 4. Охладительный компрессор
- 5. Боковая панель DRY 3-23
- 6. Крышка DRY 3-23
- 7. Осушительный фильтр
- 8. Конденсатор
- 9. Предварительный обмен воздух воздух
- 10. Задняя панель DRY 3-23 11 Стойки вентилятора
- 12. Мотор вентилятора
- 13. Решётка вентилятора
- 14. Электроклапан by-pass горячего газа
- 15. Катушка электроклапана by-pass горячего газа
- 16. Электроклапан слива конденсата
- 17. Катушка электроклапана слива конденсата
- 18. Механический фильтр конденсата
- 19. Клапан обслуживания слива конденсата
- 20. Электронный генератор синхронизации ТС
- 21. Сепаратор конденсата
- 22.Основание из пенопласта
- 23. Лицевая (передняя) панель DRY 3-23

Приложение DRY 3-23 - DMC11 Сухой контролёр воздуха

Измерительная панель-Осушитель DRY 3-23

- 1. Общий выключатель
- 2. DMC 11 Сухой контролёр воздуха
- 3. Диаграмма потока воздуха и газа хладагента

Приложение DRY 3-23 -DMS11 Сухой контролёр воздуха

Электрическая диаграмма - Осушитель DRY 3-23

Перечень:

IG Общий выключатель

К Холодильный компрессор

KR: Начало движения реле компрессора **KM:** Электрический мотор компрессора **KT:** Термическое устройство компрессора

Vc Вентилятор конденсатора

PR Датчик DMC 11

EVB: Электроклапан by-pass горячего газа **EVD:** электроклапан слива конденсата

Приложение DRY 3-23 - DMC11 Сухой контролёр воздуха.

Кнопка - включено программирование Кнопка- проверка слива конденсата / рост значения Индикатор - включен = аппарат загружен сверкающий = в программировании Индикатор - электроклапан by-pass горячего газа запущен

Индикатор - электроклапан слива конденсата запущен

Аппарат DMC контролирует все операции осушителя, допускающие калибровку характеристик функционирования. С помощью датчика ставят в условия испарителя, регулируется участие электроклапана by-pass горячего газа, электронный циклический таймер, заказ, равномерные промежутки, электроклапан слива конденсата.

 Φ ункционирование- осушитель в работе - индикатор включен Дисплей 10 индикатор высвечивает точку росы работы представляемого потока для средств окрашивания полос вверху такого же дисплея (голубой - зелёный-красный).

- Голубая зона- осушитель работает в очень низкой точке росы с
- риском льда.
- Зелёная зона- это зона работы, которая обеспечивает
- оптимальную точку росы.
- Красная зона очень высокая точка росы, осущитель может
- трактовать сжатый воздух в несоответствующем случаи.

Электроклапан by-pass горячего газа загружается, когда точка росы опускается вниз на 3^{0} C (set-point).

Индикатор включен- и разряжается когда поднимается по крайней мере до 4.5° C (set-point + Δ t)-погасший индикатор.

Электроклапан слива конденсата загружается за 2 сек.(Ton) -индикатор включен - каждую минуту (Toff).

Нажимая кнопку, осуществляется ручной тест слива конденсата.

SET-UP- В фазе техосмотра DMC11 подготавливается с полученными верхними значениями. Возможно, что для требуемых деталей или на заявки технического обслуживания DMC11 программируются разные значения. Подготовка следующих характеристик:

- Set-point температура присутствия электроклапана by-pass горячего газа(.....- Δt ... 1.5^0 K)
- Ton время активизации электроклапана слива конденсата
- Toff время паузы между двумя последующими активизациями электроклапана слива конденсата.

Для активирования set-up нажимают в течение нескольких минут кнопку, регулирование подтверждается миганием индикатора.

Первая высвеченная характеристика имеет Set-point; нажимать следующую кнопку для последовательного загорания других.

Для изменения значение характеристик отбирают, держать нажатой кнопку и оказывать действие на кнопку, значение потока представлено на дисплее индикатора, диапазон регулирования и резолюция (значение каждого отдельного индикатора).

Показание «свободной шкалы» представляет прерывистость первого или последнего индикатора дисплея, соответствующего для преодоления нижней границы и верхней области измерения.

Предпослать кнопку, имеющую возможный выход программирования в различные моменты, не завершать никакие операции за 2 мин, аппарат автоматически выходит из программирования.

Примечание: В случаи поломки датчика одновременно загораются первый и последний индикатор дисплея, с индикатором всегда включен (электроклапан by-pass горячего газа всегда загружен).